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Summary. N-mixture models describe count data replicated in time and across sites in terms of abundance N and detectabil-
ity p. They are popular because they allow inference about N while controlling for factors that influence p without the
need for marking animals. Using a capture–recapture perspective, we show that the loss of information that results from
not marking animals is critical, making reliable statistical modeling of N and p problematic using just count data. One
cannot reliably fit a model in which the detection probabilities are distinct among repeat visits as this model is over-
specified. This makes uncontrolled variation in p problematic. By counter example, we show that even if p is constant
after adjusting for covariate effects (the “constant p” assumption) scientifically plausible alternative models in which N (or
its expectation) is non-identifiable or does not even exist as a parameter, lead to data that are practically indistinguish-
able from data generated under an N-mixture model. This is particularly the case for sparse data as is commonly seen in
applications. We conclude that under the constant p assumption reliable inference is only possible for relative abundance
in the absence of questionable and/or untestable assumptions or with better quality data than seen in typical applica-
tions. Relative abundance models for counts can be readily fitted using Poisson regression in standard software such as R
and are sufficiently flexible to allow controlling for p through the use covariates while simultaneously modeling variation
in relative abundance. If users require estimates of absolute abundance, they should collect auxiliary data that help with
estimation of p.
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1. Introduction

Strategies for inference about abundance N from count data
under imperfect detection include: (i) capture–recapture mod-
eling in which auxiliary data supplement the counts in
order to allow direct inference about detection rates p; (ii)
N-mixture modelling in which no such auxiliary data are col-
lected but instead the model is structured in order to allow
inference about N and p (which is assumed constant after con-
trolling for covariates, hereafter, “constant p”); or (iii) index
models in which inference is made about relative abundance
assuming constant p.

N-mixture models were developed by Royle (2004) as
an alternative to estimating abundance using tools such
as capture–recapture that can be difficult, expensive, and
impractical (Royle, 2004; Dennis et al., 2015). They are
popular among field biologists and the original model of
Royle (2004) has been extended, for example, to model zero-
inflation, extra-Poisson variation in abundance, and to relax
the assumption of population closure between visits (see
Dénes et al., 2015, for a recent review).

The idea that we can estimate both N and p without
marking animals seems appealing. However, this economy
of field effort imposes a cost on the analysis. Recaptures of
marked animals provide auxiliary data for estimation of p;
we can model these data in terms of p without reference to
N. In N-mixture modeling, we do not have such auxiliary
data and instead rely on the constant p assumption along

with a specific choice of hierarchical model on N to ensure
identifiability.

In choosing among competing methodologies, it is impor-
tant that users are fully-informed about comparative
weaknesses and strengths of different approaches. Here, we
describe the N-mixture model and highlight the information
loss that makes reliable statistical modeling of N and p prob-
lematic using count data alone.

1.1. N-Mixture Model

N-mixture models describe count data obtained from repeated
visits to multiple sites. They exploit the fact that given repli-

cate counts n1, . . . , nJ and the model nj

iid∼ Binomial(N, p)
(j = 1, . . . , J ; J > 1) it is possible to estimate both parameters
N and p. N-mixtures extend this model to collections of counts

{nij} sampled across sites (i = 1, . . . , I), with Ni

iid∼ Poisson(ν)
or more heavily parameterized alternatives. The assumptions
of (i) conditionally independent binomial replicates each with
the same abundance Ni, and (ii) constant detection are both
critical. The model for N helps with estimation, but as we
show below the reliance on a constant p and a family of
distributions to model the collection {Ni} makes the result-
ing inference non-robust. In particular, scientifically plausible
alternative models for the counts nij may not feature Ni (or
its expectation) as a parameter, or Ni may feature but be
non-identifiable.
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The binomial count assumption underpinning N-mixture
models has critical limitations:

(i) It is a strong assumption that there exists a closed pop-
ulation of Ni animals to be sampled at site i each visit.
When the sampling area is not well defined, prescrib-
ing such a population may result in the introduction of
individual heterogeneity in p that cannot be controlled
for by observable covariates.

(ii) The binomial assumption requires that individuals do
not get counted multiple times in a single replicate.
Enforcing this without marking may be difficult. A
Poisson model, conditional on N, may be preferable
to the binomial and allows for sampling with replace-
ment.

(iii) Uncontrolled variation in p among visits leads
to model specification problems as we show in
Section 2.

(iv) Estimation of the binomial index N from repeated
counts is practically difficult and relies on second
moment assumptions (Carroll and Lombard, 1985).
Such difficulties flow through to N-mixture models for
N (Dennis et al., 2015).

1.2. Structure of the Remainder of the Article

In Section 2, we consider repeated binomial counts as incom-
plete data for a standard closed population capture–recapture
model. We show the extent of information loss when indi-
viduals in the population are not marked. In Section 3, we
compare N-mixture models to an alternative that describes
the counts as observations from a double Poisson distri-
bution. This double Poisson model has the same first two
moments as the N-mixture model and describes a situa-
tion where replicate counts do not represent samples from
a clearly defined population as required for the N-mixture
model.

In Section 4, we compare N-mixture modeling to Poisson
regression and show that it is parameters describing relative
differences in N and p that can be reliably estimated under
both models. We conclude that N-mixture models offer little
practical benefit over Poisson regression for count data with
inference restricted to relative abundance.

2. A Capture-Recapture Perspective

We can think of the replicate binomial count model for
a single site that underpins N-mixtures as a model for
incomplete capture–recapture data (a latent multinomial
sensu Link et al., 2010). Let ωj be an indicator of capture
or recapture on occasion j, and write ω = (ω1 ω2 . . . ωJ)
as a capture history for an animal over J occasions.
Using � to denote the complete set of capture histo-
ries, including the null history, and xω (ω ∈ �) to denote
the count of the number of individuals with capture his-
tory ω, the observable counts in a three-sample example
are x111, x110, . . . , x001. The inference problem amounts to
inferring x000, the number of individuals with the null
history 000.

In the N-mixture approach, we forgo marking and
cannot identify recaptures. The observable data at a

particular site in our three sample example, are now
n1 = x111 + x101 + x110 + x100, n2 = x111 + x110 + x011 + x010,
and n3 = x111 + x101 + x011 + x001 (cf Dennis et al.,
2015).

This perspective makes clear what we are giving up when
we move from capture–recapture experiments to instead
modeling collections of counts. We have taken a capture–
recapture problem, with all of its associated difficulties, and
replaced it with one in which the capture summaries xω are
now latent. The summaries n1, . . . , nJ represent a reduction of
the original capture–recapture data but they are not sufficient
statistics for any of the closed population capture–recapture
models in the series M0, . . ., Mtbh (Otis et al., 1978), even
assuming constant p.

The capture–recapture perspective also helps us to under-
stand the likelihood underlying the N-mixture problem.
Under model Mt (Otis et al., 1978), we can write the
model as

[{xω}|N, p]∝
J∏

j=2

(
Mj

mj

)(
N−Mj

nj−mj

)(
N

nj

)
︸ ︷︷ ︸
L1=[{mj }|{nj },N]

×
J∏

j=1

(
N

nj

)
p

nj

j (1−pj)
N−nj

︸ ︷︷ ︸
L′
2=[{nj }|N,p]

(1)

where

mj = the number of marked animals caught in sample j

(j = 2, . . . , J),
Mj = the number of marked animals in the popula-
tion immediately before the time of the jth sample (j =
2, . . . , J).

The term L1 in (1) corresponds to an extension of the
simple hypergeometric sampling model for a two-sample
capture–recapture study conditional on the captures {nj}
(Seber, 1982). Under model Mt , we can treat L1 as a partial
likelihood and this contains virtually all the information
about abundance that we can extract from this model
(Schofield and Barker, 2016).

Anticipating the N-mixture model, we now consider model
M0 in which p1 = p2 = . . . = pJ = p. We can write the model
as

[{xω}|N, p] ∝
J∏

j=2

(
Mj
mj

)(
N−Mj

nj−mj

)(
N
nj

)
︸ ︷︷ ︸

L1=[{mj }|{nj },N]

×
∏J

j=1

(
N
nj

)(
JN
t

)︸ ︷︷ ︸
L2=[{nj }|N,t]

×
(

JN

t

)
pt(1 − p)JN−t

︸ ︷︷ ︸
L3=[t|N,p]

(2)

where t = ∑
j
nj.

We make two observations:

(i) Through L2, the statistics n1, . . . , nJ |t now contain some
information about N. It is this information that the
N-mixture model exploits.

(ii) The product L2 × L3 corresponds to the likelihood

function for the model {nj}|N iid∼ Binomial(N, p). Rel-
ative to L1 the residual information provided by the
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On the Reliability of N-Mixture Models 371

Figure 1. Contributions of the terms L1, L2, and L3 to the
full likelihood scaled so that the full likelihood is equal to L1 ×
L2 × L3. The data were simulated for k = 5 sample capture–
recapture study with a closed population of 20 individuals
and p = 0.25 each occasion.

counts n1, . . . , nJ through the terms L2 and L3 is small
(Figure 1).

For N-mixture modeling the data m2, . . . , mJ in (1) and (2)
are missing. Summing across the missing data in (1) leads to

[n1, . . . , nJ |N, p] =
J∏

j=1

(
N

nj

)
p

nj

j (1 − pj)
N−nj = L′

2

and reliable inference about N and p is not possible as the
model is over-specified.

Under M0, summing across the missing data in (2) leads to

L2 × L3 =
∏J

j=1

(
N

nj

)(
JN

t

) ×
(

JN

t

)
pt(1 − p)JN−t (3)

The corresponding model nj|N iid∼ Binomial(N, p) forms a cen-
tral part of the N-mixture likelihood and is identifiable.
However:

(i) Identifiability depends critically on the assumption
p1 = p2 = . . . = pJ (or equivalently that the pj are
deterministic functions of time-specific covariates).
In capture–recapture studies, this assumption is not
required for identifiability and moreover, there is some
robustness to departure from this assumption owing to
the dominance of the term L1 in (2) evident in Figure 1.

(ii) Identifiability also depends critically on the assumption
of binomial variation in nj. If instead, we assume that

nj

iid∼ Poisson(Np) then

[n1, . . . , nJ |N, p] = t!∏
i
nj!

(
1

J

)t

× e−JNp(JNp)t

t!
. (4)

Under the Poisson model the nj given their total
t are ancillary statistics (i.e., their distribution is

fully known) and the only estimable quantity is λ =
Np. Contrast this with capture–recapture in which
modeling the counts as Poisson does not lead to non-
identifiability of abundance (Cormack, 1992; Schofield
and Barker, 2016).

The Poisson model has to be considered seriously
given that it arises as the limiting case of a bino-
mial with N → ∞ and p → 0 while holding λ = Np

fixed. For sparse data (i.e., small E[nj]), we would
expect the Poisson and binomial models to be near
indistinguishable. This also explains in part the insta-
bility of the model (3) that arises when the sample
mean and variance are close in value (Dennis et al.,
2015). Given that N-mixture modeling was developed
with sparse data in mind (Royle, 2004), we would
anticipate that a simple Poisson model is a plausible
alternative representation of the data but one in which
N is no longer identifiable. Importantly, this funda-
mental non-identifiability of the Poisson model cannot
be addressed simply through replication in space or
time.

2.1. N-Mixtures and the Multivariate Poisson
Distribution

The N-mixture model exploits spatial replication, in which we
now have site-specific abundances denoted Ni, and describes
the collection {Ni} as exchangeable random variables drawn

from a known distribution. Modeling Ni

iid∼ Poisson(ν), the
capture–recapture model for the complete data {xiω} can be
written as

[{xiω}, {Ni}|p] =
∏

i

Multinomial({xiω};Ni, π) × Poisson(Ni; ν)

=
∏

i

∏
ω

e−νπω (νπω)xiω

xiω!

=
∏

i

∏
ω

Poisson({xiω}; νπω), (5)

where π = {πω} represent simple functions of the capture
histories and p. This is a complete data likelihood for
the N-mixture model. Deriving an observed data likelihood,
[{nij}|ν, p], from (5) by summing across latent quantities while
holding the observation {nij} fixed leads to a multivariate Pois-
son model (Dennis et al., 2015). This is the marginal model for

{nij} for N-mixtures when Ni

iid∼ Poisson(ν) and has the prop-
erty that the marginal mean and variance are identical (see
supplementary materials).

3. Binomial versus Poisson Models

If we extend the simple Poisson model (4) across sites, we have

[{nij}|{λi}] =
I∏

i=1

J∏
j=1

e−λiλ
nij

i

nij!
. (6)

Like (5), model (6) has the property that the marginal mean
and variance are identical (see supplementary materials).

 15410420, 2018, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/biom

.12734 by C
olorado State U

niversity, W
iley O

nline L
ibrary on [25/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



372 Biometrics, March 2018

The main differences are that (i) the covariances among
counts at the same site are zero in model (6) and non-
zero in N-mixture model (5), and (ii) that conditional
on Ni, the N-mixture model allows the counts to have
their variance less than their mean while in the Poisson
model they are equal. Below we introduce the double
Poisson model (Efron, 1986) that allows both under- and
over-dispersion.

Under the constant p assumption with λi = pNi, we can use
model (6) to estimate λi/λh, the abundance at site i relative
to site h. We return to this point in Section 4. Alternatively,
given the potentially large dimension of {λi}, we might wish
to model them further by way of summary or to obtain other
benefits such as shrinkage for improved estimation (James and
Stein, 1961).

The use of a hierarchical model on the expected count
is exploited in the N-mixture for a different reason than
providing a parsimonious summary. It is necessary to help
with identifiability, and is accomplished through modeling

Ni

iid∼ Poisson(ν). However, the ability to tease apart Ni and
p in the N-mixture model depends entirely on the covariance
structure introduced in this representation.

In their excellent analysis of the N-mixture model,
Dennis et al. (2015) show, among other things, that
excessively high and even infinite estimates of abundance
can readily occur, particularly when p and J are small.
When p is small, the binomial variance is approximately
equal to the mean, and the binomial and Poisson models
are near indistinguishable leading to non-identifiability of
abundance.

3.1. Can We Discriminate Among Models?

As an alternative to the conditional binomial model in the
N-mixture formulation, we might instead suppose that given
our inability to identify animals, we have sampling with
replacement. Conditional on Ni the counts can be mod-
eled as Poisson with mean pNi (p > 0). But then Ni is not
identifiable as we have shown in Section 2. Or we might
instead suppose that counts at sites are simply counts, per-
haps over- or under-dispersed Poisson random variables that
are unbounded but related by a common site effect govern-
ing their mean. In this formulation there may be no sensible
notion of an abundance Ni.

Given that N does not feature in (6), or is not identifiable
in other formulations, an important question then, is to what
extent are we able to discriminate among different hierarchi-
cal representations of the count data {nij}? We answer this

by counter-example using simulation to compare two models
under three scenarios. The two models are

Model 1: N-mixture: nij|Ni

iid∼ Binomial(Ni, p) where Ni

iid∼
Poisson(ν);

Model 2: Double Poisson-Lognormal (DPLN): nij|λi, θ
iid∼

DoublePoisson(λi, θ) where λi

iid∼ Lognormal(μ, σ2) with
restriction θ = μ/(μ − σ2).

The double Poisson distribution, fully-described by Efron
(1986), is a member of the exponential family that introduces
a second parameter θ > 0 to control the variance indepen-
dently of the mean. The parameter θ gives the double Poisson
considerable flexibility, allowing both under-dispersion (θ > 1)
and over-dispersion (θ < 1). It includes as a special case the
simple Poisson model (θ = 1); we can match first and second
moments with the binomial distribution.

To facilitate comparison with the N-mixture model, we
restricted the two families (N-mixture and DPLN) to have
identical first and second moments (see supplementary mate-
rials) by using the constraint θ = μ/(μ − σ2) for the DPLN
model. We do not advocate for this restricted version when
model fitting, but rather we chose it to simplify compari-
son by ensuring that the two families of models had similar
moments controlled by the same number of parameters in
their marginal distributions.

Our three scenarios were E[nij] = 3, corresponding to ν =
30, p = 0.1 in the N-mixture model (scenario A), E[nij] = 9,
corresponding to ν = 30, p = 0.3 in the N-mixture model (sce-
nario B), and E[nij] = 15, corresponding to ν = 30, p = 0.5
in the N-mixture model (scenario C). Parameters for the
restricted double Poisson model were chosen to match first
and second moments (Table 1).

Our scenarios are ordered by decreasing realism. Royle
(2004) developed N-mixture modeling with sparse data in
mind and this is reflected in applications. For example, the
mallard data used in the R package unmarked (Swiss Breeding
Bird Survey data from Kery et al., 2005) has 239 sites with
three visits with a mean value for nij of 0.24 birds per visit per
site and a median of 0. The great tit example data in Chapter
6 of Kéry and Royle (2016), also Swiss Breeding Bird Survey
data, has 263 sites with three visits and a mean count of 6.45
birds per site per visit with a median of 4; one third of the
great tit counts are 0. The simulation assessment of a simple
N-mixture model early in Chapter 6 of Kéry and Royle (2016)
has 150 sites, two visits per site and a mean value for nij of
1.0 animals per visit per site.

Table 1
Parameters used in simulations for the N-mixture and double Poisson models with corresponding marginal moments. The

moments are common to both models. Covariances not included in the table are all zero.

N-mixture Double poisson Moments

Scenario ν p μ σ2 E[n] Var(n) Cov(nij, nik)(j 	= k)

A 30 0.1 3 0.3 3 3 0.3
B 30 0.3 9 2.7 9 9 2.7
C 30 0.5 15 7.5 15 15 7.5
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On the Reliability of N-Mixture Models 373

We simulated data 1000 times under each model and for
each scenario, generating data across 50 sites, with J = 5
replicates at each site. We fitted each model under the three
scenarios; this leads to six comparisons, and judged each on
the basis of the marginal likelihood (the code is available in
the supplementary materials). With each model having two
parameters in the marginal distribution, twice the difference
in maximum log-likelihood corresponds to 	AIC.

When data are simulated under the N-mixture model the
double Poisson model was either preferred or within 1 AIC
unit of the N-mixture model in 82% (scenario A), 59% (sce-
nario B), or 41% (scenario C) of cases indicating an inability
to discriminate between the two models (Figure 2) even when
the expected counts are much larger than typically seen in
application and with J = 5. Similarly, when the data were
generated according to a double Poisson distribution, the N-
mixture model was either preferred or within 1 AIC unit of
the double Poisson model in 77% (scenario A), 51% (scenario
B), or 42% (scenario C) of cases. Even in the best scenario
we prefer the non-generating model about 25% of the time.
On the basis of model fit we appear unable to discriminate
unequivocally among competing models, some of which do
not feature N. This is particularly the case when the data are
sparse.

4. Relative Abundance: Poisson Models as an
Alternative to N-Mixtures

Intuitively, and under the constant p assumption, the repli-
cate counts ni1, . . . , nik provide good information on the
expected count E[nij] = μi, in the sense that the sample mean
n̄i is a minimum variance unbiased estimator for μi. This is
in consequence of the Gauss–Markov theorem and is subject
only to mild conditions on the data generating model. Thus,
when p is constant or controlled by covariates, count data
can provide reliable information on relative abundance. These
are precisely the conditions assumed in N-mixture modeling.
However, reasonable alternative approaches exist that do not
require the strong assumptions associated with the binomial
component of the N-mixture model.

We believe that Poisson modeling of the counts is a
straightforward alternative to N-mixture modeling if the aim
is to extract the information that the I × J counts reli-
ably contain; viz, the information about relative abundances
among sites after controlling for p.

In this approach, we can model

nij ∼ Poisson(μij).

For now, we assume no variation in p associated with visits
(indexed by j) and model μij as

μij = pNi = eαp+αN+z′
i
βN , (7)

where zi are site-specific covariates and βN site-covariate
effects. We also relax the restriction that p < 1; without mark-
ing it is difficult to avoid multiple counting of individuals
except when there are very few individuals present. There-
fore, there is no reason to suppose that E[ni] is strictly less
than Ni. We let ti = ∑

j
nij be the site total and T = ∑

i
ti be

the total count. We can then factorize the Poisson model as

[{nij}|{μij}] =
∏

i

∏
j

e−μij μ
nij

ij

nij!

=
∏

i

ti!∏
j
nij!

∏
j

(
1

J

)nij

︸ ︷︷ ︸
[{nij }|{ti}]

× T !∏
i
ti!

∏
i

(
ξi∑
h
ξh

)ti

︸ ︷︷ ︸
[{ti}|T,{βN }]

× e−φφT

T !︸ ︷︷ ︸
[T |φ]

(8)

where

ξi∑
h
ξh

= Nie
αp∑

h
Nhe

αp
= Ni∑

h
Nh

= ez′
i
βN∑

h
ez′

h
βN

.

and

φ = Jeαp

∑
i

Ni.

In (8) the parameters αp and αN are wholly confounded in
φ. We can obtain maximum likelihood estimators (MLEs) for
the parameters βN from the partial likelihood given by the
term [{ti}|T, βN ]. These βN represent the information we can
reliably extract; they describe relative abundances.

It is straight-forward to model covariates of detection
in this framework. If we use wij for site- and visit-specific
covariates with associated parameters βp then the model (7)
becomes

μij = e
αp+αN+w′

ij
βp+z′

i
βN . (9)

Correspondingly, we can modify the partitioning in (8) to give

[{nij}|{μij}] =
∏

i

ti!∏
j
nij!

∏
j

(
e

w′
ij
βp∑

h
ew′

ih
βp

)nij

︸ ︷︷ ︸
[{nij }|{ti},{wij },βp]

× T !∏
i
ti!

∏
i

(
ξi∑
h
ξh

)ti

︸ ︷︷ ︸
[{ti}|βp,βN }]

× e−φφT

T !︸ ︷︷ ︸
[T |φ]

(10)

where

ξi ∝ ez′
i
βN

∑
j

e
w′

ij
βp

and

φ =
∑

i

ξi.
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374 Biometrics, March 2018

Figure 2. Comparative model fit as measured by 	AIC for the N-mixture reference model compared to a 2-parameter double
Poisson–Lognormal model. Both models were fitted to data generated under each model and according to three scenarios:
E[nij] = 3 (scenario A), E[nij] = 9 (scenario B), and E[nij] = 15 (scenario C). Each case represents results from 1000 simulated
data sets. Positive values of 	AIC favor the N-mixture model. Black shading indicates that the non-generating model was
preferred. Grey shading indicates that the non-generating model is within 1 AIC unit; the legend indicates the corresponding
proportions. The top row of figures data were generated under the N-mixture model; the bottom row data under our restricted
double Poisson-Lognormal model.

Now the first two terms allow us to model detectability
through βp and relative abundances through βN , but αp and
αN are confounded in φ.

The model in (9) is in the standard form for Poisson
regression. As with the simpler models we have exam-
ined, the baseline levels of abundance αN and detection
αp are confounded; all we can model is α = αN + αp. As
this is a standard Poisson regression, we can employ

the full range of model fitting procedures, including
diagnostics such as deviance based goodness-of-fit testing.
Moreover, we can investigate random effect extensions to
allow for a wider range of models. That is, ignoring detection,
we have a full spectrum that ranges from a saturated model,
in which all sites have different E[nij], to a null model, in
which they are all the same. Between these two endpoints, we
may have covariate and random effects, with random effect
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modeling used for partial pooling to improve inference about
relative abundance rather than as an operational necessity
to allow identifiability of N.

4.1. Example: Alder Flycatcher Data

We analyze a subset of the alder flycatcher (ALFL) data
of Chandler et al. (2009) (see supplementary materials for
the source of these data; only this subset is available at this
source). The ALFL data were collected from I = 50 sites with
J = 3. Associated with the visits are two covariates: time (t)
and date (d). Associated with the sites are covariates: extent
of woody cover (w) and plant vertical structure (s). We stan-
dardized all covariates.

The N-mixture model for the ALFL data is:

nij ∼ Binomial(Ni, pij), i = 1, . . . , I, j = 1, . . . , J,

Ni ∼ Poisson(νi), i = 1, . . . , I,

logit(pij) = αp + β1tij + β2dij

log(νi) = αν + γ1wi + γ2si.

This model was fitted in the R package unmarked.
To compare, we also fitted three other models. The first

was a standard Poisson regression, modeled in terms of the
confounded mean μij = pijνi, with

nij ∼ Poisson(pijνi), i = 1, . . . , I, j = 1, . . . , J,

log(pij) = αp + β1tij + β2dij

log(νi) = αν + γ1wi + γ2si.

Combining, we have

nij ∼ Poisson(μij), i = 1, . . . , I, j = 1, . . . , J,

log(μij) = α + β1tij + β2dij + γ1wi + γ2si,

where α = αp + αν. This model was fitted using glm in R.
For the second model, we fitted a random effects Poisson

regression where a site-specific intercept was modeled by a
normal distribution. This model was fitted using glmer from
the lme4 package in R.

The third model was a random-effects double Poisson
model

nij ∼ DoublePoisson(μij, θij), i = 1, . . . , I, j = 1, . . . , J,

log(μij) = mij + εi,

mij = αi + β1tij + β2dij + γ1wi + γ2si,

αi ∼ N(μα, σ
2
α )

and with log(log(θij)) = mij. The log–log link function was
chosen to mimic the N-mixture model in having Poisson-like
behavior for small μ and under-dispersion otherwise. Like
the N-mixture model, the dispersion and the mean param-
eters are functionally related, and together controlled by the
same covariates. We fitted this model using integrate to find
the marginal likelihood and optim to maximize it in R. The
code for fitting all models is available in the supplementary
materials.

Regardless of the type of model (N-mixture vs Poisson), we
are led to similar inference about the site-specific effects γ1

and γ2 (Figure 3). The explanation is that γ1 and γ2 describe
how the relative abundance depends on the covariate. It is this
information that can be reliably extracted from the N-mixture
model but we can simply do this via Poisson regression.

Figure 3. Comparison of model parameter estimates after fitting the N-mixture model (gray), Poisson regression model
(black), random effects Poisson regression model (red), and the double Poisson regression model (green) to the ALFL data by
maximum likelihood. The parameters β1 and β2 represent the visit-specific covariates “time” and “date”; γ1 and γ2 the effect
of the site-specific covariates “woody cover” and “plant structure.” Plotted are the maximum likelihood estimates (enlarged
dot), ± one standard deviation (thick horizontal lines) and ± two standard deviations (thin horizontal lines).
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Table 2
Model fitting summaries for the four models fitted to the alder flycatcher data.

Model Log-likelihood No. par. AIC

N-mixture −131.11 6 274.21
Poisson regression −139.57 5 289.14
Random-effects poisson regression −139.12 6 290.24
Random-effects double poisson −130.76 6 273.52

Provided we can get a reliable estimate of the expected count
at a site then we should be able draw reasonable inferences
about relative abundance. The similarity of inference about
relative abundance is despite what appears to be clear differ-
ences among some of the four models in terms of AIC, with
the double-Poisson model preferred (Table 2).

Superficially, inference about the visit-specific covariates
β1 and β2 and the confounded intercept α = αp + αν appear
to differ. However, this is due to the different link functions
adopted for p: logit for the binomial model, log for the Pois-
son. Inference about αp and αν is very different. They are
completely confounded under Poisson regression. Their iden-
tifiability under the N-mixture model is entirely determined
by an assumption of repeated binomial counts instead of
repeated Poisson counts.

Overall, Figure 3 shows that while the baseline abundance
and detection parameters suffer from model sensitivity (as we
have highlighted in the sections above), the relative changes
in abundance are identifiable, and we are led to similar infer-
ence about relative abundance regardless of our choice of
model.

5. Discussion

The appeal of N-mixture modeling is that we can infer
properties of populations from repeated count data with-
out the expense associated with marking. However, as we
show in Section 2, the expedient of substituting auxiliary
data from recaptures by a hierarchical model involves a
critical loss of information. A consequence is that even
under ideal conditions, it is difficult to discriminate between
N-mixture models and other reasonable alternatives for count
data as we show in Section 3. Importantly, for other choices
of hierarchical model for Ni such as a negative binomial or
zero-inflated Poisson, we will be able to identify alternative
descriptions that also have Ni missing or confounded and
that will fit the data equally well (see supplementary materi-
als for binomial/negative-binomial example). Thus, we expect
the problems that we have identified for the basic N-mixture
model to carry over to more complicated implementations.

This is problematic for N-mixture modeling because we are
attempting to decompose the model for E[nij] into two factors
Ni and p without auxiliary information for making inference
about p, such as is provided by recaptures of marked animals.
While the N-mixture model allows us to do this, scientifically
plausible alternatives, such as our counter example, do not.
The problem is not an inability to fit the N-mixture model,
but rather an inability of the data to discriminate among
models that have vastly different implications for inference
about N (Gelman et al., 2014, p. 190).

Only by assuming that (i) these alternatives do not hold,
and (ii) p is constant or fully explained by covariates,
can we make inference about N. While strong assumptions
are often made in statistical modeling, in the case of N-
mixture modeling there will be little residual information to
allow checking of these assumptions and that indicate that
alternative models outside the N-mixture family should be
considered. This will be especially the case when the data are
sparse.

A commonly stated advantage of the N-mixture model is
that it allows for covariates of detectability to be modeled
as well as abundance. There is a misconception that alter-
natives to N-mixtures do not allow simultaneous modeling
of variation due to variation in abundance and variation in
detectability (Joseph et al., 2009; Dénes et al., 2015). As
some of us have shown previously (Link and Sauer, 1997),
and is clear from the partitioning of equation (10), random
effect Poisson models do allow for simultaneous modeling
of detectability and variation in abundance. It is true, that
with the N-mixture model we can have the same covariate
for both site effects and detectability. While this may sound
appealing, we offer a note of caution. The ability to use iden-
tical covariates for the two aspects of the model depends
entirely on the validity of the assumed conditional binomial
structure for the replicate counts and the assumption that
variation in detectability is fully explained by this covari-
ate.

Our message is that fundamentally count data under
imperfect detection can only be reliably used as indices.
Having controlled for detectability using covariates, counts
through ratios of their expectations provide reliable informa-
tion about relative abundance, but not absolute abundance
N or p. Although our simulations show that with increas-
ing E[nij], we can begin to discriminate among models,
the values required are much larger than seen in typi-
cal application. Even with E[nij] = 15 in our simulations,
we couldn’t clearly differentiate between models. If users
have discretionary effort and they require reliable infor-
mation about absolute abundance, our advice is that this
effort should be spent on acquiring additional data, such as
recaptures of marked individuals to allow direct estimation
of p.

6. Supplementary Materials

Supplementary material referred to in Section 2.1 is available
with this article at the Biometrics website on Wiley Online
Library along with R code for carrying out the simulations
in Section 3 and for the analysis of the flycatcher data in
Section 4.1.
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